

Fig. 1. Perspective view of a cation and anion of the title compound, showing the atomic numbering scheme. Radii are arbitrary and H atoms are omitted for clarity. The $\mathrm{O} \cdots \mathrm{O}$ hydrogen bond is indicated by a dashed line. Bond lengths and angles (see also Abstract): As-O 1.690 (7), As-C(11) 1.911 (12), As-C(21) 1.896 (12), As-C(31) 1.985 (12) $\AA, \mathrm{Cl}(1)-\mathrm{Au}-\mathrm{Cl}(2) 90.8$ (1), $\mathrm{Cl}\left(1^{1}\right)-\mathrm{Au}-\mathrm{Cl}(2) 89.2(1), \mathrm{O}-\mathrm{As}-\mathrm{C}(11) 110.4$ (5), O-AsC(21) 106.9 (4), O-As-C(31) 111.3 (5), C(11)-As-C(21) 110.5 (5), C(11)-As-C(31) 108.1 (5), C(21)-As-C(31) 109.7 (6) ${ }^{\circ}$. Symmetry operator (i): $-x, 1-y, 1-z$.

Related literature. The preparation of the title compound has been described by Potts (1970) and more recently by Yuqiu \& Shihua (1987). Structures of compounds with general formula $(R \mathrm{O})_{2} \mathrm{H}^{+} . \mathrm{AuCl}_{4}^{-}$have been described by Jones \& Sheldrick (1978) ($R=\mathrm{Ph}_{3} \mathrm{P}$; not isostructural with the title compound), Hussain \& Schlemper (1982) ($R=$ pyridine), Hussain \& Al-

Hamoud (1984) ($R=\alpha$-picoline), Hussain \& AlHamoud (1985) ($R=3$-methylpyridine), Hussain \& Al-Hamoud (1986) ($R=4$-methylpyridine), and Drew, Glaves \& Hudson (1985) ($R=2$-nonylpyridine).

Calculations were performed with the program system SHELX76 (Sheldrick, 1976) locally modified by its author. We thank the Fonds der Chemischen Industrie for financial support.

References

Drew, M. G. B., Glaves, L. R. \& Hudson, M. J. (1985). J. Chem. Soc. Dalton Trans. pp. 771-775.
Hussain, M. S. \& Al-Hamoud, S. A. A. (1984). Inorg. Chim. Acta, 82, 111-117.
Hussain, M. S. \& Al-hamoud, S. A. A. (1985). J. Chem. Soc. Dalton Trans. pp. 749-753.
Hussain, M. S. \& Al-hamoud, S. A. A. (1986). J. Crystallogr. Spectrosc. Res. 16, 647-656.
Hussain, M. S. \& Schlemper, E. O. (1982). J. Chem. Soc. Dalton Trans. pp. 751-755.
Jones, P. G. \& Sheldrick, G. M. (1978). Acta Cryst. B34, 1353-1355.
Potts, R. A. (1970). Inorg. Chem. 9, 1284-1286.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure refinement. Univ. of Cambridge, England.
Yuqiu, G. \& Shinua, X. (1987). Polyhedron, 6, 2077-2079.

Acta Cryst. (1988). C44, 2202-2204

The Structure of $\mathbf{3 '}^{\prime}, 5^{\prime}$-Di- O-acetyl-2'-deoxyadenosine

By J. N. Low
Department of Applied Physics, Electronics and Manufacturing Engineering, University of Dundee, Dundee DD1 4HN, Scotland
and R. Alan Howie
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 28 April 1988; accepted 25 July 1988)

Abstract

C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}, \quad M_{r}=335 \cdot 3\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=7.75$ (1),$b=12.89$ (2), $c=15.47$ (1) \AA, $U=1546 \AA^{3}, \quad Z=4, \quad D_{x}=1.440 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \quad \mu=0.10 \mathrm{~mm}^{-1}, \quad F(000)=$ $704, T=293 \mathrm{~K}, R=0.056$ for 919 unique observed [$F>5 \sigma(F)$] reflections. The N-glycosidic bond angle χ has a value of $-86(1)^{\circ}$, in the high anti range. The sugar pucker is ${ }^{2} T_{1}$ with $P=155(1)^{\circ}$ and $\psi=33(1)^{\circ}$. The C4'-C5' conformation is $-s c$ with $\gamma=-76(1)^{\circ}$. Symmetry-related molecules form self-base-paired hydrogen-bonded ribbons through $\mathrm{N} 1 \cdots \mathrm{~N}^{\mathrm{i}}$ and $\mathrm{N} 6 \cdots \mathrm{~N} 7^{\mathrm{ii}}$ contacts, both of $3.02 \AA\left[(\mathrm{i})-x,-\frac{1}{2}+y\right.$,

$-\frac{1}{2}-z$; (ii) $\left.-1-x,-\frac{1}{2}+y,-\frac{1}{2}-z\right]$. This type of basepairing is similar to that found for $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O acetylated adenosine molecules. The base pair shows a propeller twist, defined as the angle between the base planes about a line joining them, of $31(2)^{\circ}$.

Experimental. Crystals were obtained from aqueous solution. Space group and initial cell dimensions were obtained from Weissenberg photographs. Data were collected on a Nicolet P3 (four-circle) diffractometer in Aberdeen by RAH. The crystal had dimensions $0.9 \times 0.26 \times 0.08 \mathrm{~mm}$. Cell parameters were measured
© 1988 International Union of Crystallography
on the diffractometer using 14 reflections in the 2θ range $12-15^{\circ}$. Range of indices: $0 \leq h \leq 10 ; 0 \leq$ $k \leq 16 ; 0 \leq l \leq 20$. Data measured using $\theta / 2 \theta$ scans in the range $0<2 \theta<50^{\circ}$. Standard reflections, 114 and 040 , were measured every 50 reflections. No changes greater than 2σ from the means in the intensities of these reflections were found throughout data collection. Lorentz and polarization factors were applied. No corrections were made for absorption or secondary extinction. 1432 independent reflections measured, giving 919 observed $[F>5 \sigma(F)]$ reflections used in the refinement. The structure was solved using the SHELXS86 program (Sheldrick, 1986). The E map revealed positions of all non-hydrogen atoms. The positions of the hydrogens attached to atom N6 were obtained from a difference map. All other H atoms were included at calculated positions, $\mathrm{C}-\mathrm{H}=1.08 \AA$. The H

Fig. 1. Perspective view of molecule giving atomic numbering.

Fig. 2. View of the self-base-paired molecules.

Table 1. Coordinates $\left(\times 10^{4}\right)$ for non-hydrogen atoms with e.s.d.'s in parentheses

$U_{\text {eq }}=\frac{1}{3} \sum_{l} \sum_{j} U_{l j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2} \times 10^{3}\right)$
N1	2688 (8)	-3606 (5)	-5681 (4)	36 (2)
C2	2983 (12)	-4553 (6)	-6023 (5)	42 (3)
N3	1965 (9)	-5386(5)	-6048(4)	37 (2)
C4	469 (10)	-5170 (6)	-5650 (5)	31 (3)
C5	-23(9)	-4264(6)	-5260 (5)	27 (2)
C6	1178 (11)	-3425 (6)	-5278 (5)	35 (2)
N6	876 (8)	-2504 (5)	-4942 (5)	43 (2)
N7	-1688(8)	-4322 (5)	-4935 (4)	40 (2)
C8	-2161(11)	-5259 (6)	-5134(5)	39 (3)
N9	-910 (8)	-5843 (4)	-5555 (4)	32 (2)
Cl^{\prime}	-1048 (10)	-6851(5)	-5946 (4)	30 (2)
C2 ${ }^{\prime}$	-2280(10)	-7586 (5)	-5479 (4)	32 (2)
C3'	-2921 (10)	-8295 (5)	-6182 (5)	33 (2)
${ }^{3}{ }^{\prime}$	-1760(7)	-9165 (4)	-6256(3)	41 (1)
C3 ${ }^{\prime}$	-2455(14)	-10034 (7)	-6603(6)	44 (3)
C3'2	-1203 (12)	-10913 (6)	-6619(5)	58 (3)
03'1	-3894 (9)	-10061 (5)	-6844 (4)	70 (2)
C4'	-2851(10)	-7609 (6)	-6990 (5)	35 (2)
C5	-4558(11)	-7116 (6)	-7248(6)	47 (3)
os'	-5616 (8)	-7914 (5)	-7650 (3)	50 (2)
C5'1	-6904 (12)	-8326(7)	-7180(6)	45 (3)
C5'2	-7883(12)	-9100 (8)	-7683(6)	69 (4)
05'1	-7160(8)	-8121 (5)	-6439 (4)	61 (2)
O4'	-1754 (7)	-6741 (4)	-6784 (3)	45 (2)

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

C2-N1	1.350 (9)	C6-N1	1.347 (9)
N3-C2	1.333 (9)	C4-N3	1.343 (9)
C5-C4	1.368 (9)	N9-C4	1.385 (9)
C6-C5	1.428 (10)	N7-C5	1.388 (9)
N6-C6	1.317 (9)	C8-N7	1.299 (9)
N9-C8	1.390 (9)	C1'-N9	1.437 (8)
C2'-C1'	1.526 (9)	O4'-C1'	1.415 (7)
C3'-C2'	1.506 (9)	$\mathrm{O}^{\prime}-\mathrm{C} 3^{\prime}$	1.442 (8)
C4'-C3'	1.531 (9)	C3'1-O3'	1.355 (10)
C3'2-C3'1	1.493 (12)	O3'1-C3'1	1.177 (11)
C5'-C4'	1.522 (10)	O4'-C4'	1.441 (8)
O5'-C5'	1.455 (9)	C5'1-O5'	1.346 (10)
C5'2-C5'1	1.476 (12)	O5'1-C5'1	1.193 (9)
C6-NI-C2	119.1 (7)	N3-C2-N1	129.7 (8)
C4-N3-C2	109.3 (6)	C5-C4-N3	128.4 (7)
N9-C4-N3	125.8 (7)	N9-C4-C5	105.8 (7)
C6-C5-C4	117.1 (7)	N7-C5-C4	111.9 (7)
N7-C5-C6	130.9 (8)	C5-C6-N1	116.4 (7)
N6-C6-N1	119.6 (7)	N6-C6-C5	124.0 (8)
C8-N7-C5	$103 \cdot 1$ (7)	N9-C8-N7	114.7 (7)
C8-N9-C4	104.4 (6)	C1'-N9-C4	125.4 (7)
C1'-N9-C8	129.4 (7)	C2'-C1'-N9	114.1 (6)
O4'-C1'-N9	108.9 (6)	O4'-C1'-C2'	104.7 (6)
$\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C1} 1^{\prime}$	104.0 (5)	O3'-C3'-C2'	108.8 (6)
$\mathrm{C} 4^{\prime}-\mathrm{C3}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	$103 \cdot 1$ (6)	C4'-C3'-O3'	111.2 (6)
$\mathrm{C} 3^{\prime} 1-\mathrm{O}^{\prime}-\mathrm{C} 3^{\prime}$	115.2 (7)	C3'2-C3'1-O3'	112.1 (9)
O3'1-C3'1-O3'	121.8 (10)	O3'1-C3'1-C3'2	126.1 (9)
$\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}$	115.1 (7)	O4'-C4'-C3'	106.8 (6)
O4'-C4'-C5'	$104 \cdot 3$ (6)	O5'-C5'-C4'	107.9 (6)
C5'1-O5'-C5'	117.8 (7)	C5'2-C5'1-O5'	111.3 (8)
O5'1-C5'1-O5'	123.8 (9)	O5'1-C5'1-C5'2	124.9 (10)
$\mathrm{C} 4^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 1^{\prime}$	$110 \cdot 6$ (5)		

atoms were given fixed isotropic temperature factors approximately 1.5 times that of the parent atom and allowed to ride on their parent atoms. All other atoms were refined anisotropically. Blocked full-matrix refinement (on F) was carried out using the program

SHELX76 (Sheldrick, 1976). The refinement converged at $\quad R=0.056, \quad w R=0.048, \quad w=$ $1 \cdot 4632\left[\sigma^{2}(F)+0.000086 F^{2}\right]^{-1} .217$ refined parameters; average shift/e.s.d. $=0.003$; max. shift/e.s.d. $<$ 0.01 ; max. difference peak, 0.23 , min., $-0.22 \mathrm{e} \AA^{-3}$.

Scattering factors were taken from International Tables for X-ray Crystallography (1974). The program packages XANADU (Roberts \& Sheldrick, 1975) and PLUTO (Motherwell \& Clegg, 1978) were also used. All calculations were carried out on the Dundee University PRIME computer. The atomic numbering is shown in the perspective drawing (Fig. 1). Tables 1 and 2 give the atomic parameters, bond lengths and angles.* Fig. 2 shows the hydrogen bonding between sym-metry-related molecules. The chirality of the molecule was not determined.

Related literature. The conformational parameters are in accordance with the IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983) guidelines. The

[^0]related compounds $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyladenosine and its 8 -bromo derivative have been studied by Wilson, Tollin \& Howie (1986) and Boyd, Low \& Tollin (1987). Propeller twists between self-base-paired adenine bases are discussed by Wilson \& Tollin (1987).

References

Boyd, R., Low, J. N. \& Tollin, P. (1987). Acta Cryst. C43, 1370-1372.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983). Pure Appl. Chem. 55, 1273-1280.
Motherwell, W. D. S. \& Clegg, W. (1978). PlutO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for torsion angle, mean plane and libration correction calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Kruger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Wilson, C. C. \& Tollin, P. (1987). Nucleosides Nucleotides, 6, 643-653.
Wilson, C. C., Tollin, P. \& Howie, R. A. (1986). Acta Cryst. C42, 697-700.

Acta Cryst. (1988). C44, 2204-2206

The Absolute Structure of 3-[N-Methyl- N-(S)- α-methylbenzyl] carbamoyl-2,4dimethylpyridinium Chloride Monohydrate

By W. J. J. Smeets, A. L. Spek* and J. A. Kanters
Vakgroep Algemene Chemie, Afdeling Kristal- en Structuurchemie, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

(Received 11 May 1988; accepted 20 July 1988)

Abstract. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=322.83$, monoclinic, $\quad P 2_{k}, \quad a=13.667(1), \quad b=8.585$ (1),$\quad c=$ 16.106 (4) $\AA, \quad \beta=106.09$ (1) ${ }^{\circ}, V=1815.7$ (5) \AA^{3}, Z $=4, D_{x}=1.181 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \mu=$ $19.4 \mathrm{~cm}^{-1}, F(000)=688, T=295 \mathrm{~K}, R=0.0659$ for 6021 observed reflections with $I>2 \cdot 5 \sigma(I)$. The molecules contain three planar parts, the pyridinium and phenyl rings and the carbamoyl fragment in which the carbonyl and N-methyl groups are in anti position. The water molecules are disordered over two positions with site occupation factors of 0.52 (1) and 0.48 (1) respectively. The Cl^{-}ions serve as hydrogen-bond

[^1]0108-2701/88/122204-03\$03.00
acceptors for the $\mathrm{N}-\mathrm{H}$ groups of the pyridinium cations and for the disordered water molecules.

Experimental. A colourless plate-shaped crystal, $1.00 \times 0.40 \times 0.06 \mathrm{~mm}$, was glued on top of a glass fibre and transferred to an Enraf-Nonius CAD-4F diffractometer. Unit-cell parameters and their e.s.d.'s were derived from a least-squares treatment of 12 reflections $\left(10.0<\theta<14.4^{\circ}\right) .7232$ intensity data were collected in 'FLAT' mode within two Friedelrelated quadrants of the reflection sphere ($h k l$ and $\bar{h} \overline{k l}$ with $0<h<16 ; 0<k<10 ;-19<l<19 ; 2 \cdot 86<\theta<$ $70 \cdot 0^{\circ}$) using Ni-filtered $\mathrm{Cu} K \alpha$ radiation in $\omega / 2 \theta$ scan mode with $\Delta \omega=(0.60+0.15 \tan \theta)^{\circ}$. Three reference © 1988 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51266 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

